
Rigorous Component-based System Design

Saddek Bensalem1,2, Ananda Basu1, Marius Bozga1, Paraskevas Bourgos1, and
Joseph Sifakis1

1VERIMAG Laboratory, Université Joseph Fourier Grenoble, CNRS
2CEA-Leti, MINATEC Campus, Grenoble France

Abstract. Rigorous system design requires the use of a single powerful
component framework allowing the representation of the designed system
at different levels of detail, from application software to its implementa-
tion. This is essential for ensuring the overall coherency and correctness.
The paper introduces a rigorous design flow based on the BIP (Behavior,
Interaction, Priority) component framework [1]. This design flow relies
on several, tool-supported, source-to-source transformations allowing to
progressively and correctly transform high level application software to-
wards efficient implementations for specific platforms.

1 Introduction

Traditional engineering disciplines such as civil or mechanical engineering are
based on solid theory for building artefacts with predictable behaviour over
their life-time. These follow laws established by simple Newtonian physics and
recognized building codes and regulations. Their complexity is limited by these
physical and normative factors.

In contrast, for systems engineering, we do not have an equivalent theoret-
ical basis allowing to infer system properties from the properties of its com-
ponents. Computer science provides only partial answers to particular system
design problems. With few exceptions, in this domain predictability is impos-
sible to guarantee at design time and therefore, a posteriori validation remains
the only means for ensuring their correct operation over time.

The complexity of systems currently being built, the fast pace of technological
innovation, and the harsh market conditions to which they are subjected, includ-
ing in particular time-to-market, create many difficulties for system design. These
difficulties can be traced in large part to our inability to predict the behaviour of
an application s oftware running on a given platform. Usually, such systems are
built by reusing and assembling components: simpler sub-systems. his is the only
way to master the complexity and to ensure the correctness of the overall design,
while maintaining or increasing productivity. However, system-level integration
becomes extremely hard because components are usually highly heterogeneous:
and have different characteristics, are often developed using different technolo-
gies, and highlight different features from different viewpoints. Other difficulties
stem from current design approaches, often empirical and based on expertise and
experience of design teams. Naturally, designers attempt to solve new problems



2 S. Bensalem, A. Basu, M. Bozga, P. Bourgos, J. Sifakis

by reusing, extending and improving past solutions proven to be efficient and
robust. This favors component reuse and avoids re-inventing and re-discovering
design solutions every time. Nevertheless, on a l onger term perspective, it may
also be counter-productive: people are not always able to adapt in a satisfactory
manner to new requirements and moreover, they tend to reject better solutions
simply because they do not fit their design know-how.

2 System design

System design is facing several difficulties, mainly due to our inability to predict
the behavior of an application software running on a given platform. Usually,
systems are built by reusing and assembling components that are, simpler sub-
systems. This is the only way to master complexity and to ensure correctness of
the overall design, while maintaining or increasing productivity. However, sys-
tem level integration becomes extremely hard because components are usually
highly heterogeneous: they have different characteristics, are often developed
using different technologies, and highlight different features from different view-
points. Other difficulties stem from current design approaches, often empirical
and based on expertise and experience of design teams. Naturally, designers
attempt to solve new problems by reusing, extending and improving existing
solutions proven to be efficient and robust. This favors component reuse and
avoids re-inventing and re-discovering designs. Nevertheless, on a longer term
perspective, this may also be counter-productive: designers are not always able
to adapt in a satisfactory manner to new requirements. Moreover, they a priori
exclude better solutions simply because they do not fit their know-how.

System design is the process leading to a mixed software/hardware system
meeting given specifications. It involves the development of application software
taking into account features of an execution platform. The latter is defined by
its architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it should
take into account not only functional but also extra-functional specifications
regarding the use of resources of the execution platform such as time, memory
and energy. Meeting extra-functional specifications is essential for the design
of embedded systems. It requires evaluation of the impact of design choices on
the overall behavior of the system. It also implies a deep understanding of the
interaction between application software and the underlying execution platform.
We currently lack approaches for modelling mixed hardware/software systems.
There are no rigorous techniques for deriving global models of a given system
from models of its application software and its execution platform.

A system design flow consists of steps starting from specifications and leading
to an implementation on a given execution platform. It involves the use of meth-
ods and tools for progressively deriving the implementation by making adequate
design choices.



Rigorous Component-based System Design 3

We consider that a system design flow must meet the following essential
requirements:

– Correctness: This means that the designed system meets its specifications.
Ensuring correctness requires that the design flow relies on models with well-
defined semantics. The models should consistently encompass system description
at different levels of abstraction from application software to its implementation.
Correctness can be achieved by application of verification techniques. It is de-
sirable that if some specifications are met at some step of the design flow, they
are preserved in all the subsequent steps.
– Productivity: This can be achieved by system design flows

– providing high level domain-specific languages for ease of expression
– allowing reuse of components and the development of component-based so-

lutions
– integrating tools for programming, validation and code generation

– Performance: The design flow must allow the satisfaction of extra-functional
properties regarding optimal resource management. This means that resources
such as memory, time and energy are first class concepts encompassed by formal
models. Moreover, it should be possible to analyze and evaluate efficiency in using
resources as early as possible along the design flow. Unfortunately, most of the
widely used modeling formalisms offer only syntactic sugar for expressing timing
constraints and scheduling policies. Lack of adequate semantic models does not
allow consistency checking for timing requirements, or meaningful composition
of features.
– Parcimony: The design flow should not enforce any particular programming
or execution model. Very often system designers privilege specific programming
models or implementation principles that a priori exclude efficient solutions.
They program in low level languages that do not help discover parallelism or
non determinism and enforce strictly sequential execution. For instance, pro-
gramming multimedia applications in plain C may lead to designs obscuring
the inherent functional parallelism and involving built-in scheduling mechanisms
that are not optimal. It is essential that designers use adequate programming
models. Furthermore, design choices should be driven only by system specifica-
tions to obtain the best possible implementation.

3 Rigorous design flow

We call rigorous a design flow which allows guaranteeing essential properties of
the specifications. Most of the rigorous design flows privilege a unique program-
ming model together with an associated compilation chain adapted for a given
execution model. For example, synchronous system design relies on synchronous
programming models and usually targets hardware or sequential implementa-
tions on single processors [2]. Alternatively, real-time programming based on
scheduling theory for periodic tasks, targets dedicated real-time multitasking
platforms [3].



4 S. Bensalem, A. Basu, M. Bozga, P. Bourgos, J. Sifakis

A rigorous design flow should be characterized by the following:

– It should be model-based, that is all the software and system descriptions
used along the design flow should be based on a single semantic model. This
is essential for maintaining the overall coherency of the flow by guaranteeing
that a description at step n meets essential properties of a description at step
n − 1. This means in particular that the semantic model is expressive enough
to directly encompasses various types of component heterogeneity arising along
the design flow [4]:

– Heterogeneity of computation: The semantic model should encompass both
synchronous and asynchronous computation by using adequate coordina-
tion mechanisms. This should allow in particular, modeling mixed hard-
ware/software systems.

– Heterogeneity of interaction: The semantic model should enable natural and
direct description of various mechanisms used to coordinate execution of
components including semaphores, rendezvous, broadcast, method call, etc.

– Heterogeneity of abstraction: The semantic model should support the de-
scription of a system at different abstraction levels from its application soft-
ware to its implementation. This makes possible the definition of a clear
correspondence between the description of an untimed platform-independent
behavior and the corresponding timed and platform-dependent implementa-
tion.

– It should be component-based, that is it provides primitives for building com-
posite components as the composition of simpler components. Existing theoret-
ical frameworks for composition are based on a single operator e.g., product of
automata, function call. Poor expressiveness of these frameworks may lead to
complicated designs: achieving a given coordination between components often
requires additional components to manage their interaction.

For instance, if the composition is by strong synchronization (rendezvous)
modelling broadcast requires an extra component to choose amongst the possi-
ble strong synchronizations a maximal one. We need frameworks providing fam-
ilies of composition operators for natural and direct description of coordination
mechanisms such as protocols, schedulers and buses.
– It should rely on tractable theory for guaranteeing correctness by construction
to avoid as much as possible monolithic a posteriori verification. Such a theory
is based on two types of rules:

– Compositionality rules for inferring global properties of composite compo-
nents from the properties of composed components e.g. if a set of components
are deadlock-free then for a certain type of composition the obtained com-
posite components is deadlock-free too. A special and very useful case of
compositionality is when a behavioral equivalence relation between compo-
nents is a congruence [5]. In that case, substituting a component in a system
model by a behaviorally equivalent component leads to an equivalent model.

– Composability rules ensuring that essential properties of a component are
preserved when it is used to build composite components.



Rigorous Component-based System Design 5

4 The BIP Design Flow

BIP [1] (Behavior, Interaction, Priority) is a general framework encompassing
rigorous design. It uses the BIP language and an associated toolset supporting
the design flow. The BIP language is a notation which allows building complex
systems by coordinating the behaviour of a set of atomic components. Behavior
is described as a Petri net extended with data and functions described in C. The
transitions of the Petri are labelled with guards (conditions on the state of a
component and its environment) as well as functions that describe computations
on local data. The description of coordination between components is layered.
The first layer describes the interactions between components. The second layer
describes dynamic priorities between the interactions and is used to express
scheduling policies. The combination of interactions and priorities characterizes
the overall architecture of a component. It confers BIP strong expressiveness that
cannot be matched by other languages [6]. BIP has clean operational semantics
that describe the behaviour of a composite component as the composition of the
behaviors of its atomic components. This allows a direct relation between the
underlying semantic model (transition systems) and its implementation.

������������������

Software

Application

Model BIP
D−Finder

execution &
calibration

Simulation, Statistical
Model Checking

Functional Code Glue Code

Platform (MPARM)

Runtime

translation

BIP

transformation(3)
model

Application
Mapping

Hardware

ArchitectureSoftware

translation(1)

correctness(2)

Architecture

Hardware

Model 

Abstract
System Model

BIP

transformation(5)

transformation
model

Instrumented
System Model

BIP

performance analysis(4)

code generation(6)

Application Mapping

System Model

BIP

Concrete

Fig. 1. BIP Design Flow for Manycore

The BIP design flow uses a single language to ensure consistency between the
different design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and



6 S. Bensalem, A. Basu, M. Bozga, P. Bourgos, J. Sifakis

consequently essential safety properties. The design flow involves several distinct
steps, as illustrated in figure 1:

1. The translation of the application software into a BIP model. This allows
its representation in a rigorous semantic framework. Translations for several
programming models (including synchronous, data-flow and event-driven)
into BIP are already implemented.

2. Correctness checking of the functional aspects of the application software.
Functional verification needs to be done only at high level models since safety
properties and deadlock-freedom are preserved by different transformations
applied along the design flow. To avoid inherent complexity limitations, the
verification method rely on compositionality and incremental techniques.

3. The generation of an abstract system model from the BIP model representing
the application software, a model of the target execution platform as well as
a mapping of the atomic components of the application software model into
processing elements of the platform. The obtained model takes into account
hardware architecture constraints and execution times of atomic actions. Ar-
chitecture constraints include mutual exclusion induced from sharing phys-
ical resources such as buses, memories and processors as well as scheduling
policies seeking optimal use of these resources.

4. Performance analysis on the system model using simulation-based models
combined with statistical model checking.

5. The generation of a concrete system model obtained from the abstract model
by expressing high level coordination mechanisms e.g., interactions and pri-
orities by using primitives of the execution platform. This transformation
involves the replacement of atomic multiparty interactions and/or dynamic
priorities by protocols using asynchronous message passing (send/receive
primitives) and arbiters ensuring. These transformations are proved correct-
by-construction as well.

6. The generation of platform dependent code, inluding both functional and
glue code needed to deploy and run the application on the target multi-
core. In particular, components mapped on the same core can be statically
composed thus avoiding extra overhead for (local) coordination at runtime.

References

1. A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Systems in
BIP. In Software Engineering and Formal Methods SEFM’06 Proceedings, pages
3–12. IEEE Computer Society Press, 2006.

2. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

3. A. Burns and A. Welling. Real-Time Systems and Programming Languages.
Addison-Wesley, 2001. 3rd edition.

4. T. Henzinger and J. Sifakis. The Embedded Systems Design Challenge. In Formal
Methods FM’06 Proceedings, volume 4085 of LNCS, pages 1–15. Springer, 2006.

5. R. Milner. A Calculus of Communication Systems, volume 92 of LNCS. Springer,
1980.

6. S. Bliudze and J. Sifakis. A Notion of Glue Expressiveness for Component-Based
Systems. In CONCUR’08, volume 5201 of LNCS, pages 508–522. Springer, 2008.


